Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Cyanide in bronchoalveolar lavage is not diagnostic for Pseudomonas aeruginosa in children with cystic fibrosis

We investigated whether cyanide in bronchoalveolar lavage (BAL) fluid could be used as an early diagnostic biomarker of infection in kids with cystic fibrosis

Research

SYNERGY CF: Getting the best start to life - preventing early cystic fibrosis lung disease by solving the host-inflammation infection conundrum

Cystic fibrosis related progressive lung disease characterised by inflammation and infection commences soon after birth.

Research

Does lung function in preschoolers help to predict asthma in later life?

The earliest respiratory function assessments, within or close to the neonatal period, consistently show correlations with lung function and with the development of asthma into adulthood. Measurements of lung function in infancy reflect the in utero period of lung development, and if early enough, show little influence of postnatal environmental exposures. 

Research

Virome assembly reveals draft genomes of native Pseudomonas phages isolated from a paediatric bronchoalveolar lavage sample

We present lung virome data recovered through shotgun metagenomics in bronchoalveolar lavage fluid from an infant with cystic fibrosis, who tested positive for Stenotrophomonas maltophilia infection. Using a bioinformatic pipeline for virus characterization in shotgun metagenomic data, we identified five viral contigs representing Pseudomonas phages classified as Caudoviricetes.

Research

Structural modification of the Pseudomonas aeruginosa alkylquinoline cell–cell communication signal, HHQ, leads to benzofuranoquinolines with anti-virulence behaviour in ESKAPE pathogens

Citation: Rossetto V, Moore-Machacek A, Woods DF, ……. O’Gara F, McGlacken GP, Jerry Reen F. Structural modification of the Pseudomonas aeruginosa

Research

Complete Genomes of Three Pseudomonas aeruginosa Bacteriophages, Kara-mokiny 1, Kara-mokiny 2, and Kara-mokiny 3

Here, we present the complete genome sequence of Pseudomonas aeruginosa phages Kara-mokiny 1, Kara-mokiny 2, and Kara-mokiny 3. These phages have lytic capabilities against P. aeruginosa and belong to the myovirus morphotype. The genomes of Kara-mokiny 1 and Kara-mokiny 2 are 67,075 bp while that of Kara-mokiny 3 is 66,019 bp long.

Research

Global distribution of human hookworm species and differences in their morbidity effects: a systematic review

The global distribution and morbidity effects for each specific hookworm species is unknown, which prevents implementation of the optimum intervention for local hookworm control.

Research

AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma

The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma.

Research

Successful establishment of primary small airway cell cultures in human lung transplantation

The study of small airway diseases such as post-transplant bronchiolitis obliterans syndrome (BOS) is hampered by the difficulty in assessing peripheral airway

Research

BAL Inflammatory Markers Can Predict Pulmonary Exacerbations in Children With Cystic Fibrosis

Pulmonary exacerbations in cystic fibrosis are characterized by airway inflammation and may cause irreversible lung damage. Early identification of such exacerbations may facilitate early initiation of treatment, thereby potentially reducing long-term morbidity. Research question: Is it possible to predict pulmonary exacerbations in children with cystic fibrosis, using inflammatory markers obtained from BAL fluid?